
Elements of descriptive and 
inferential statistics for 

biology

François-Xavier Lejeune
f-x.lejeune@icm-institute.org

Year 2023-2024

1



2

▪ Introduction

▪ Part 1: Data description

▪ Part 2: Hypothesis testing

▪ Part 3: Data modeling

Course outline



3

Introduction



4

Why do we need statistics in biology? (1/3)

Statistical methods are necessary to quantify and account for the 

variability inherent in biological or biomedical data, which typically 

affects the measurements of a variable of interest. 

This variability mainly comes from two sources that must be 

distinguished: 

• Biological variability due to subjects, organisms, and biological 

samples => biological variation of interest

• Technical variability due to measurement, instrumentation, reagent, 

variability (unconsciously) introduced by experimenters, sample 

preparation => non-biological interferences (irrelevant variation)



Why do we need statistics in biology? (2/3)

Both sources of variations can still be characterized as follows:

1. Biological variability [related to subjects or groups of subjects]

• Within variations for the measurements taken on the same subject 
(repeated measurements) or the same group of subjects

• Between variations for the measurements taken from several subjects or 
several groups of subjects (e.g., differences in age, sex, education, 
pathology, treatment, biological constants or genetic characteristics...)

2. Metrological variability [related to the measurement protocol]

• Variations of the experimental conditions (e.g., differences in 
temperature, humidity, luminosity, several people involved in the data 
collection…)

• Errors induced by the measuring device due, e.g., to mechanical 
vibrations, calibration issues, equipment aging…
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Why do we need statistics in biology? (3/3)

To manage the large amount of biological data:

Methods for the analysis and integration of large and heterogeneous data: 

• Clinical, Brain imaging (PET Scan, MRI) data,

• Behavioral data, Electrodermal activity (EDA) recordings,

• Electrophysiological recordings (MEG, EEG, MEA), 

• Omics (genomics,  transcriptomics, proteomics, metabolomics…), 

• Histology (microscopic study of cells and tissues)…

methods for feature selection and dimensionality reduction…
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Basic statistics vocabulary
• Population: group of individuals or statistical units targeted by the study (size N)

• Sample: subset of the population used for the study (size n << N)

• Variable X: common trait of individuals that can be observed or measured

Statistical experiment: typically involves a randomly drawn sample (“randomization” 

step) of sufficient size to represent the study population for investigating a phenomenon 

or testing a hypothesis.

Population (size N)
X: p, μ, σ²

Sample
n randomly drawn individuals

n observations x1, …, xn

Inferential statistics
Tests, estimation, modeling

Descriptive statistics
Description, hypothesis generation
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Choosing the appropriate statistical analysis?

The choice of the statistical methods is essentially guided by

1. “What are we looking for in the data”
[ biological question or study objective(s)]

• Exploratory approach to gain new insights and generate novel hypotheses 

for further investigation…

• Inferential approach to test an a priori hypothesis or construct a “predictive 

model”…

2. Data characteristics

• Types and distributions of variables (Quantitative and/or categorical)

• Experimental design: e.g. sample sizes available per condition

• Presence of missing values and/or extreme values (“outliers”)

• Repeated measurements on the same individual, possibly at several points 

in space and/or time (longitudinal study)



Quantitative variables

The variable is quantitative if its values correspond to measurable quantities 

given by numbers.

Discrete data = integer values in a countable set

Examples (counting measures):

• number of relapses in MS patients,

• number of cells per unit area,

• number of mutations in a 10 kb DNA sequence,

• number of words recalled in a memory test…

Continuous data = infinity of values in a real interval

Examples:

• weight, height, body mass index, age,

• daily dose of levodopa in a parkinsonian patient,

• blood glucose testing,

• volume of a brain region in brain imaging…
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The variable is qualitative or categorical (factor) if its values are not quantities 

measured by numbers, but define a group of categories called modalities or 

levels.

Nominal variable = categories without any kind of natural order

Examples:

• Sex: male/female,

• Smoking status coded as ‘yes’/’no’,

• Blood group: A / B / AB / O…

Ordinal variable = categories can be ordered

Examples:

• frequency of an activity: never, rarely, sometimes, often, very often,

• pain severity: none, minimal, moderate, severe, unbearable,

• Alzheimer’s Disease progression: pre-symptomatic stage, mild 

cognitive impairment, mild AD, moderate AD, severe AD…

Categorical variables

10



11

Part 1: Data description

Summarize and represent graphically 
the information contained in the data



Unidimensional descriptive analysis

12

Figure taken from du Prel, Röhrig, Blettner, Dtsch Arztebl Int 2009

Usually, the distribution of a 
variable is described using

❑ 3 numerical criteria

• Central tendency

• Dispersion

• Shape of data (skewness + 

kurtosis)

❑ 1 frequency graph

Data presentation:

• Mean ± Standard Deviation

• Median with Interquartile 

Range

• Counts and percentages
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Notion of quantiles

Main quantiles of the Normal distribution N(0,1)

The notion of empirical quantile applies to the ordered values of a quantitative 

variable.

The quantile of order α (0 ≤ α ≤ 1) then refers to the value qα of the variable such 

that a proportion α of the values in the population is less than or equal to qα.

Usual quantiles:

• Median: α = 50%

• Quartiles: α = 25%, 50%, 75% (Q1, Q2, Q3)

• Deciles: α = 10%, 20%, …, 90% (D1, D2, …, D9)

• Percentiles: α = 1%, 2%, …, 99% (C1, C2, …, C99)
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Numerical summary of a distribution

Central tendency = value around which the 
observations are distributed

• Empirical average:

• Mode

• Median Q2

Dispersion = observations spread around the 
central tendency

• Estimated variance:

• Standard deviation (SD):

• Range: Max – Min

• Interquartile range:    IR = Q3 – Q1

• Coefficient of variation:
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Among the dispersion values, the standard error of the mean (SEM) is a 

criterion often used (sometimes incorrectly) instead of the standard deviation:

It is therefore important to make the following distinction:

The SD of a sample is used to indicate the variability of the observed values 

within the sample or population (e.g., ages within a group of patients).

Unlike the SD, the SEM does NOT reflect the variability of the sample but how 

much the estimated mean varies among samples as if the study was repeated 

on several samples of size n (standard deviation of the mean...).

 Whatever the statistic used SEM or SD, it must ALWAYS be indicated in a 
study!!!

Standard Deviation vs Standard Error of the Mean



Probabilistic models
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Probability theory and statistics are generally distinguished as follows:

Probability: aims at defining mathematical models (or theoretical laws of 

distribution) governing chance and at studying their properties

Statistics: aims to compare these theoretical models with real data

Many so-called “parametric” approaches are based on the assumption that the 

observed data are realizations of random variables whose distribution law is 

known. In this case, the analysis will consist of selecting, adjusting and validating 

probabilistic models that can be used to test hypotheses, predict or guide 

decision-making.

To do this, we have several laws of continuous or discrete distributions commonly 

used in practice: uniform, normal, exponential, binomial, Poisson, etc.
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Among the probability laws, the Gaussian distribution 

characterized by its “bell-shaped” curve is frequently used in 

practice because it allows for modeling the variability of many 

natural phenomena (fasting blood glucose, bacterial division rate, 

etc.) and the distribution of measurement errors.

Carl Friedrich Gauss 
(1777-1855)

Pierre-Simon de Laplace 
(1749-1827)

Normal distribution (Laplace-Gauss)

Example 2. Data on chest measurements of 
5738 Scottish Militiamen (Quetelet 1846) 

Example 1. Galton board 
(flow of balls through a 
pyramid of nails)

Data: https://www.stat.cmu.edu/StatDat/Datafiles/MilitiamenChests.html

Adolphe Quetelet
(1796-1874)
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Describe the shape of a distribution

The bell density of the Gaussian distribution is also used as a reference to characterize 

the shape of other continuous probability distributions on the following 2 criteria:

• Measure of asymmetry (skewness)

• Measure of peakedness (kurtosis)

Right skewed Left skewedNormal = Symmetric

Leptocurtic PlatycurticNormal = Mesocurtic

Figure taken from G. Saporta, 
Probabilités, analyse des données 
et statistique, Technip
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Usual graphical representations
5 possible representations of the distribution of UPDRS-OFF score values of 29 

parkinsonian patients: which one is the most informative?

Plot Mean + SD Plot Mean + 
SEM

Boxplot + 
mean value

Boxplot + mean 
value + sample 
values

Violin plot + Boxplot + 
mean value + sample 
values

Source: Nucleipark project UPDRS = Unified Parkinson's Disease Rating Scale: Parkinson’s disease 
progression assessment scale; OFF = off treatment
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95% confidence intervals

• Numerical parameter
 if X follows a normal distribution:

• Mean
whatever the distribution of X, if n > 30:

• Frequency
if n×p, n×(1-p) > 10:

Interval with a 95% probability of containing the parameter of interest:
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Two-dimensional descriptive analysis

Bivariate analysis is the study of the relationship between two variables X and Y 

observed on the same sample of individuals.

Usual methods (numerical indicator + graphic):

• 2 quantitative variables: correlation + scatterplot with a regression line

• 2 categorical variables: contingency table + bubble plot, mosaic plot or 
bivariate barplot

• 1 quantitative variable with 1 categorical variable: correlation ratio + boxplot

/!\ Bivariate analysis focuses on the simultaneous variation of two variables, 

but it does not allow for establishing causality in the relationship!
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Correlation and scatterplots

Application: The rXY  coefficient of (Bravais-) Pearson correlation
measures the linear relationship between 2 quantitative variables.

 rXY = 0 does not necessarily imply the absence of a (non-linear) link between X and Y

 |rXY| = 1 with more or less important linear regression slopes

http://guessthecorrelation.com/2 quantitative variables X and Y

Karl Pearson 
(1857-1936) at 
the origin of 
statistics 
applied to 
biomedicine
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Coefficient ρ of Spearman’s rank correlation

Application: Spearman’s rank correlation coefficient ρ is applied to 

establish:

• the relationship between 2 ordinal qualitative variables

• a monotonic non-linear relationship between 2 quantitative variables

Principle:

1. the ordered values (or levels) of the variables X and Y are replaced by 
the ranks noted xi et yi

2. the Spearman coefficient is then given by the following formula:

✓ if ρ is close to 0: no relationship between X and Y

✓ if ρ is close to -1: strong negative relationship between X and Y

✓ if ρ is close to 1: strong positive relationship between X and Y

Charles Spearman 
(1863-1945)
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Pearson or Spearman?

The example below illustrates the values of Pearson and Spearman correlation 

coefficients for 3 types of monotonic relationships:
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Contingency table and χ2 coefficient

Marginal distributions of X and Y

Conditional distributions of X / Y = yh

and Y / X = xl

The coefficient χ2 measures the difference between the “observed” nlh and 
“theoretical” counts nl+ * n+h expected if X and Y are independent:

“+ χ2 is large
+ the relationship is strong 

between X and Y”

Bubble plotContingency table

2 categorical variables X and Y

X \ Y rowsums

colsums
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Measures of association based on χ2

Based on the χ2 coefficient, 3 linkage measures are useful for assessing 

the strength of association between 2 categorical variables:

• Cramér’s V

• Contingency coefficient CC

• Phi coefficient

2 categorical variables X and Y
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Correlation ratio
Let Y be a quantitative “dependent” variable observed among n individuals 

and G a factor indicating the grouping of individuals into K distinct classes.

The observations of Y may differ due to two sources of variation:

• Variation within classes: Intra-class variation
• Variation between classes: Inter-class variation (factor effect)

We then use the correlation ratio:

to measure the intensity of the effect of the factor G on the variable Y (value 

between 0 = no connection and 1 = perfect connection between Y and G).

Example 
for K = 3 
classes

1 quantitative variable Y with 1 categorical variable G
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In the case of a dataset with p variables (p > 3), it becomes impossible to 

visualize the individuals in a p-dimensional space.

To reduce the dimension, the objective of factorial methods is to calculate a 

limited number of composite variables, called latent variables or principal 

components, which are constructed from the original variables in such a way 

as to summarize the data as well as possible. These methods facilitate the 

generation of graphical representations of the data (individuals and 

variables) utilizing these PCs as axes.

Main factorial methods:

• Principal Component Analysis (PCA, quantitative variables)

• Multiple Correspondence Analysis (MCA, categorical variables)

• Multiple Factor Analysis (MFA, variables may be numerical or categorical)

Goals: summarize and visualize multidimensional data

Multidimensional descriptive analysis
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Understanding dimension reduction

A common example of dimension reduction is the taking of photographs, which 

takes us from a 3-dimensional space (the one we live in) to a 2-dimensional 

space (our photo).

Of course, depending on the angle from which we consider our subject, all our 

photos will not bring the same level of information.

Figure taken from J.-P. Fénelon: Camel or dromedary?
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PCA: Example 1

PCA provides a projection of individuals in a 
factorial plane constructed from the 7 
cardiovascular variables.

The correlation circle shows which variables 
best explain the variation of the subjects on 
the 2 axes.

Goal: 71 subjects with myocardial infarction (29 deaths, 42 survivors) for whom 7 

variables were measured on admission to a cardiology department.

FRCAR = Cardiac frequency, INCAR = Cardiac index, INSYS = Systolic index, PRDIA = Diastolic pressure, PAPUL = Pulmonary arterial pressure, PVENT = 
Ventricular pressure, REPUL = Pulmonary resistance

Source: J.-P. Nakache
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PCA: Principle of the method

Figure. The 
component T1 must 
“capture” the 
maximum inertia of 
the dataset

Component T1
Component T1

Component T2

The projection of multidimensional data on a plane (2D) gives us a distorted vision of 

reality. The goal of PCA is to determine reduced dimensional spaces that minimize 

these distortions. We can then visualize the data in an “optimal” space, called factorial 

plane, generated by 2 perpendicular lines called principal components.

Computation of the components:
• Construction of a 1st component T1 so as to ① minimize the squares of the 

distances of the points to T1 and ② maximize the dispersion of the points 
(individuals) projected on T1

• Construction of T2 orthogonal to T1 and maximizing the dispersion on T2
• And so on, in order to capture as much variance as required…
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PCA: a spotlight on data

Image from Umetrics AB, Umeå, Suède, 
And reproduced in M. Tenenhaus, 

Statistiques : Méthodes pour décrire, expliquer et prévoir, Dunod, 2007
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n x p table of 
centered 
reduced data

0

PCA: the method in brief

Correlation 
matrix p x p

λ1

λ2

…

λp

0

p x p matrix 
of 
eigenvectors

Matrix 
n x p’ (p’ << p)
of principal 
components

(2) Diagonalization step

(3) Projection of the data on the eigenvectors 
(orthogonal directions of maximum variance)

(1) Data 
standardization
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PCA: Example 2

Data represent RNA-Seq expression values from 8 tissues, with multiple 
biological replicates for each tissue.

Figure. By coloring 
the dots per tissue, 
the projection of 
the samples 
indicates the 
homogeneity of the 
expression profiles 
in each tissue, as 
well as the 
differences in 
expression between 
the 8 tissues.
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To go further with PCA

Greenacre, M., Groenen, P.J.F., Hastie, T. et al. Principal component analysis. Nat Rev

Methods Primers 2, 100 (2022). https://doi.org/10.1038/s43586-022-00184-w



36

Hierarchical ascending classification

The HAC method aims at gathering individuals in homogeneous and well 

separated groups (clusters) according to a similarity criteria.

The algorithm is mainly based on 2 criteria:

1. Choice of a distance: euclidean, max, manhattan…

2. Aggregation strategy: diameter (complete), moyenne (average), ward…

Expression 
data of the 8 
tissues: 
euclidean 
distance and 
diameter 
method

Representation of clusters by a dendrogram
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Missing data

Missing data (MD) are frequent if not inevitable in databases, these can come 

from various reasons:

❑ Missing measurements;

❑ Data measured but lost or not reported;

❑ Data measured but the value is considered unusable (obvious error of 
measurement, the value seems aberrant);

❑ Data not available: e.g. “Don’t know” response;

❑ Censoring case: the value is outside the detection limits of the device;

❑ Censorship in a survival study:

▪ Left cens.: the subject has already experienced the event before the 
start of the study, 

▪ Right cens.: the event has not been observed at the end of the study;

❑ Genetics: punctual absence of genotype (SNPs of some individuals)... 
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MD management methods
In some cases, it is feasible to conduct analysis without the need to impute 

missing data, especially when removing individuals with missing data does not 

result in a significant loss of available information.

Otherwise, various strategies exist for MD imputation:

▪ Simple imputation: The MD is replaced by a unique value, obtained by 
averaging the k nearest observations (k-NN), by local regression, the NIPALS 
algorithm, SVD, or the use of random forests...

▪ Multiple imputation: A MD is replaced by several candidate values allowing 
to take into account in the analysis the additional uncertainty linked to the 
replacement of the MD

▪ Bayesian approach: It is assumed that the MDs are derived from a prior 
probability distribution

https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-m-app-idm.pdf

▪ Genetics: reconstruction of missing SNPs by haplotype from a reference 
population (“most probable” genotype values)

https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-m-app-idm.pdf
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Part 2: Hypothesis testing

Choose between two hypotheses

Illustration: Monty Python’s The Meaning of Life (1983)



Principle of statistical tests
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A statistical test is a decision procedure between two hypotheses concerning 

one or more samples.

Example. In a study comparing a “drug” group and a “placebo” group, blood 
pressures measurements are taken from both groups to determine whether 
the drug has an effect on blood pressure.

Hypothesis formulation: If μ1 and μ2 are the mean blood pressure of the 2 

“drug” and “placebo” groups, one way to establish the effect of the drug on 

blood pressure is to demonstrate that μ2 is different from μ1 from the 

collected observations.

Goal of the test: To ascertain whether the observed difference between the 

two means can be attributed to chance, i.e. due to sampling fluctuations; or if 

instead, it reflects a real difference (sufficiently probable).
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The test hypotheses transpose the biological question (e.g., the effect of a drug) 

into two complementary statements using the distribution characteristics of the 

study population (parameter values, shape of the distribution...), called:

• Null hypothesis noted H0: the one that is considered true a priori;

• Alternative hypothesis noted H1: hypothesis complementary to H0.

The objective of the test is then to decide whether the model described by H0 is 
“plausible”. 

Example.

H0: the drug has no influence against H1: the drug has an influence
or

H0: μ1 = μ2 vs H1: μ1 ≠ μ2

H1 is said to be two-sided when there is no need to know the direction of the 

difference (i.e. μ1 ≠ μ2), or one-sided if we are interested in a particular direction

(i.e. μ1 < μ2 or μ1 > μ2).

Test hypotheses
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Examples of formulation for H0 and H1

1. Comparison of 2 new treatments A and B

H0: A and B have equivalent efficiency
Two-sided H1: A and B have a different efficiency

2. Comparison of treatment A to placebo (inactive product)

H0: Treatment A and placebo are equivalent
One-sided H1: Treatment A is more effective than placebo

3. Effect of an anti-tumor drug related to the presence of a V variant

H0: Independence between the observed effect (+ or -) and the presence of the 
variant (V-/V+)

H1: Existence of a relationship between the 2 factors

4. Comparison of 4 treatments A, B, C and D

H0: The 4 treatments are equivalent
Two-sided H1: At least one treatment is different from the others

In a statistical test, “choosing between H0 and H1” is done in order to avoid 2 

types of errors, called Type I and Type II errors.
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Test statistics
Since we have to choose between “H0 and H1”, the conclusion of a test will be 

based on a decision variable called the test statistic S. S is a random variable that 

summarizes the information contained in the sample and whose observed value 

sobs can be calculated from the observations.

Examples of usual S statistics:

❑ Parametric tests: Student’s T, Fisher’s F in the ANOVA test…

❑ Non-parametric tests: Mann-Whitney U, Kruskal-Wallis K statistic…

To decide…

☺ The distribution of S is known under H0, which makes it possible to control for 

the Type I error of “falsely rejecting H0” [FALSE POSITIVE]:

Example. Conclude that a treatment is effective when it is in fact ineffective…

 Conversely, the distribution of S is unknown under H1, which makes it difficult 

to control for the Type II error of “falsely accepting H0” [FALSE NEGATIVE]: 

Example. Risk of not detecting the efficiency of a treatment…



44

Alpha risk (α) or Type I error

RejectionNon-rejectionRejection

Decision rule according to the values 
of sobs (two-sided H1, α = 5%):

-1.96 and 1.96 are the quantiles 2,5% 
and 97.5% of the Normal distribution  

delimiting the rejection region

If H0 is true…
the Type I error is the Probability of “falsely rejecting H0”:

α = PH0(reject H0), where α and PH0 are assumed to be known

The significance level α is set a priori by the experimenter (usually 5% or 1%).

Let sobs be the observed value of the S statistic: according to PH0 (theoretical 
distribution of S under H0), sobs can be “probable enough” or “less probable”:  

For example, if S ~ N(0,1):
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If H1 is true…
the β error of Type II is the Probability of “falsely accepting H0”:

β = PH1(reject H1), with PH1 unknown and the value β undetermined in general

The quantity 1−β is the power of the test.

Beta risk (β) or Type II error

Decision H0 is TRUE H1 is TRUE

H0 is accepted
Good decision TN

Confidence level 1 – α
Bad decision FN

Error β

H0 is rejected
Bad decision FP

Error α
Good decision TP

Power of the test 1 – β

Truth



4646

Ideally, a « good test » should minimize both types of error:

Type I and type II errors

This minimization is actually a compromise to be made as the 2 types of errors are 
closely related. For example, by varying the value of alpha:

• if α = 10% instead of 5%, type I error becomes more probable -> detecting effects is 
easier, but detection errors occur more frequently

• if α = 1% instead of 5%, type II error becomes more probable -> risk of missing effects, 
but fewer errors in detection

While controlling the α error is not a problem, we will see in the following how it is 
possible to control the β error (dependent on effect and sample sizes).

H0: “You’re not pregnant”
vs

H1: “You’re pregnant”
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The most common way to report a test result is to 

indicate its p-value which

If H0 is true…
represents the probability of obtaining the observed 
value of the test statistic (or an even more extreme 
value):

• If the test is two-sided: p = PH0(|S| > sobs)

• If the test is upper-tailed: p = PH0(S ≥ sobs)

• If the test is lower-tailed: p = PH0(S ≤ sobs)

 The smaller the p-value, the more likely H0 is to be rejected 
because the obtained value of sobs is considered “too unlikely” 
when H0 hold.

Usual thresholds:

• p < 0.001: very high significance ***☺

• p < 0.01: high significance **

• p < 0.05: significance *

• p > 0.05: n.s. 

Test result report: p-value (1/2) Theoretical distribution of S under H0
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Test result report: p-value (2/2)

The interpretation of the test result based exclusively on the p-value can be delicate 

in practice, if one considers that the concept of “statistical significance” may not be 

in agreement with that of “biological significance”, i.e. the real importance that can 

be given to an observed biological effect.

Common practical situations:

1. Difference between 2 groups of subjects, considered “important” by the 

experimenter, does not pass the threshold of statistical significance simply 

because of sampling variations measured on too small numbers of subjects, 

resulting in a “lack of power” of the test.

2. Very small or biologically insignificant effects, considered statistically significant 

just because of the too large number of subjects for which “everything becomes 

significant!”

In both cases, the additional indication of a quantitative measure describing the true 

magnitude of the observed effect (effect size), independently of the size of the 

population (e.g. difference in means), is important for properly balancing the 

concepts of statistical and biological significance.
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For the Cohen’s d, the effect size can be described by using the following scale: 

“weak” effect around 0.2, “moderate” around 0.5 and “strong” around 0.8.

As it is a unitless value, the effect size can also be used in meta-analyses 

combining effect sizes from different studies in integrative studies.

Other types of effect sizes: Correlation, odds ratios...

Test result report: Effect size or when p-value is not enough!

In addition to the p-value, we can look at the distance of an observed value on 

the sample from its norm indicated by H0. This distance is called an effect and the 

importance of this effect can be evaluated through a statistic called effect size.

Absolute effect size:

Relative effect size (without units):

(Sullivan & Feinn, J Grad Med Educ 2012)
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To go further with p-values, significance and effect size

Sullivan GM, Feinn RS. Using effect size—or why the P. value is not enough. J Grad Med 

Educ. 2012;4(3):279–282. doi:10.4300/JGME-D-12-00156.1.

Krzywinski, M., Altman, N. Significance, P values 

and t-tests. Nat Methods 10, 1041–1042 (2013). 

https://doi.org/10.1038/nmeth.2698
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Power of a test
The power of a test (1-β) is its capacity to detect deviations from the null 

hypothesis. While α is fixed, the power (and type II error β) will depend on the 

sample size, the dispersion and the size of the difference (or effect size d) “that 

is supposed to exist”.

(1) vs (2) same effect size d: power increases 
with the number of subjects

(1) vs (3) same number of subjects: power 
increases with effect size



Sample size
To conduct a successful test, choosing an appropriate sample size is crucial for 

achieving sufficient power:

 A size that is too small will tend to give larger standard deviations that can 

lead to missing effects when they really exist (lack of power).

 Conversely, a size that is too large will tend to detect tiny “statistically 

significant” effects (systematic rejection of H0), even for effects too small to 

make biological sense.

It is therefore essential to determine the best suitable sample size for the 

experiment, “somewhere between too many and not enough...”. For this, 

calculation rules exist to obtain the sample size according to:

• the effect size,

• the dispersion,

• the required power level

52
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Power and sample size
Power is important because it tells us how likely it is that the test will identify a significant 

difference or effect when it actually exists.

To conduct an experiment with a high power level (often 1 – β = 0.8), a prior knowledge 

of the effect size and dispersion is necessary for determining the appropriate sample size. 

For this purpose, a pilot study with a small sample size may be useful to indicate these 

values, in preparation for a larger scale study.

Explicit mathematical formulas are available 

for most of the standard parametric tests 

facilitating the calculations of power or 

sample sizes.

These calculations can be easily performed 

using online calculators wherein you simply 

need to choose the desired test and input 

the anticipated parameter values.

Chow S, Shao J, Wang H. 2008. Sample Size Calculations 
in Clinical Research. 2nd Ed. Chapman & Hall/CRC 
Biostatistics Series.

http://powerandsamplesize.com/

http://powerandsamplesize.com/
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Main steps of a test:

1. Choose the appropriate test for the question asked and the type of data

2. Establish H0 and H1 (the 2 hypotheses must be mutually exclusive and 
include all possibilities)

3. Set the significance level of the test (α) 

4. Calculation of the test statistic (decision variable whose theoretical 
distribution is known under H0) -> STAT SOFTWARE

5. Calculation of the p-value -> STAT SOFTWARE

6. Conclude

The choices (steps 1, 2 and 3) as well as the final interpretation (step 6) 

remain at the discretion of the experimenter. Never forget that the result of a 

test always includes a dose of uncertainty.

WE WILL NEVER KNOW IF WE MADE THE RIGHT DECISION!

Conducting a statistical test
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Multiple comparisons problem (1/2)

The problem of multiple comparisons arises when a statistical analysis involves 

testing several hypotheses at once.

The multiplication of tests on the same data set then leads to an increase in the 

risk of being wrong by highlighting significant differences that are only due to 

chance (case of FALSE POSITIVES).

From a statistical point of view, we say that the overall alpha risk is increasing. 
In general, the alpha risk for a single test is set at 5%. However, when conducting 
k tests, the global alpha risk becomes:

For α = 5%, we have thus:  αglobal = 0.487 (k=13) et αglobal = 0.512 (k=14)

This implies that over 13 comparisons, there is more than a 50% chance of finding 
one or more significant differences just by chance!!! 

 Corrections exist to achieve a global error rate of 5% for all tests performed.
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Multiple comparisons problem (2/2)

Shadok proverb

“If you keep trying, you 
will finally succeed. So: 

The more it fails, the 
more likely it will 

work.”



57

Corrections of multiple tests

Bonferroni: the p-values only increase with the number of tests 
performed

• FWER type correction (Familywise Error Rate)
• Very conservative procedure (most stringent) 
• Calculation:

Benjamini-Hochberg: p-values increase with their number and the rate 
of non-significant p-values

• FDR type correction (False Discovery Rate)
• Not very conservative (better suited for selecting traits of 

“potential interest”) 
• Commonly used in differential expression analysis
• Calculation: 

nbp: number of tests

i: rank of p in the p-values 
ordered in ascending
order

Carlo Bonferroni 
(1892-1960)

Yoav Benjamini
(1949-)
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For normally distributed observations, or given a sample size large enough of independent 

data with same distribution for establishing asymptotic normality of the sample mean 

(central limit theorem with n > 30):

1 sample

• Compare the sample mean to a theoretical value (variance assumed known, Gauss)

• Compare the sample mean to a theoretical value (unknown and estimated variance, Student)

• Compare a proportion to a theoretical value (one-sample binomial test)

2 independent samples

• Comparison of 2 means (equal variances or sufficiently large samples, Student)

• Comparison of 2 variances (Fisher)

• Comparison of 2 proportions (Chi-square test for equality of proportions with Yates continuity 
correction)

2 paired samples: same sample observed at 2 different times or under 2 different 
conditions (Student’s paired t-test)

More than 2 samples: One-way ANOVA, Bartlett’s and Levene’s tests to compare several 
variances

1/ Parametric tests

Taken from https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-l-inf-tests.pdf
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Student’s t-test (n < 30)
Goal:

• Compare the mean of a sample to a theoretical mean
• Compare the means of 2 samples
• Compare the means of 2 paired series
• Testing a correlation coefficient

Principle of the test (equal variances):

1. Estimate the mean and standard deviation of each sample

2. Calculate the value of the statistic

3. Determine the number of df = n1 + n2 – 2 to extract the critical value of 
the Student distribution corresponding to the risk level α

4. Compare t0 to the critical value and conclude

William Sealy 
Gosset “Student”

(1876-1937)

As the publication of the work would have required the prior agreement of the Guinness 
Company, William Gosset, statistician and head brewer, published his work in statistics 
under the pen name “Student”.

/!\ Welch’s t-test for 2 samples 
of unequal variances
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One-way ANOVA (1/2)

For a variable X measured on n individuals grouped in p groups, 

the ANOVA consists in constructing the following hypothesis 

test:

Assumptions of One-way ANOVA

Observations should satisfy the following 3 assumptions:

• Data independence

• Normality of the distribution in the groups

• Homoscedasticity: equal variance in the different groups (Bartlett’s test)

“All groups are equal” vs 

“At least 1 group is 

different from the others”

Ronald Fisher 
(1890-1962)
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Following the principle of variance decomposition: Total variance = Within-class 

variance + Between-class variance, the F-statistic evaluates the ratio between 

the “explained” variance (INTER) and the residual variance (INTRA):

The observed value of F is then compared to the critical value of the Fisher 

distribution with p-1 and n-p df corresponding to the risk level α to conclude.

Note that the ANOVA test can detect a difference among the means, but it does 

not tell which groups are different from others!

 Post-hoc tests are required to perform multiple pairwise comparisons!

One-way ANOVA (2/2)
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Post-hoc tests of ANOVA

John Tukey 
(1915-2000)

Charles Dunnett 
(1921-2007)

After a conclusive ANOVA test with “at least one group different 

from the others”, a post-hoc test is a multiple comparison test 

that determines significant differences between the groups 2 

by 2.

2 types of post-hoc tests are commonly used:

• Tukey HSD (honestly significant difference): Pairwise 

multiple comparisons comparing all the group means 

between them (i.e., k×(k-1)/2 possible comparisons with k 

groups). 

• Dunnett: Pairwise multiple comparisons comparing all 

means of the experimental groups to the mean of a given 

control group.
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Example: One-way ANOVA (1/4)

Example on simulated data comparing expression levels of a gene X under 5 

different conditions.

  summary(aov(Expression~Condition, data=dataset))

   Df  Sum Sq  Mean Sq  F value   Pr(>F)    
Condition     4     147.0        36.75     8.267   2.7e-05 ***
Residuals    55     244.5          4.45                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residuals   55  244.5    4.45                    
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Example: One-way ANOVA (2/4)

TukeyHSD(aov(Expression~Condition, data=dataset))

As the ANOVA test is conclusive, the Tukey HSD post-hoc test is performed for 

the pairwise comparisons of all conditions:
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Example: One-way ANOVA (3/4)

As the ANOVA test is conclusive, the Tukey HSD post-hoc test is performed for 

the pairwise comparisons of all conditions:
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Example: One-way ANOVA (4/4)

What should have been done before the ANOVA test: check the conditions 

of use of the test!

1. Independence of the groups: It is assumed that the experiment is 
conducted on independent observations within and between groups.

2. Normality of groups: the Shapiro-Wilk test is applied to the 5 
conditions

tapply(dataset$Expression, dataset$Condition, shapiro.test)

3. Homogeneity of variances: the Bartlett’s test does not indicate a 
significant difference in variance between groups.

bartlett.test(Expression~Condition, data=dataset)

  Bartlett test of homogeneity of variances
 

  data:  Expression by Condition
  Bartlett's K-squared = 1.2807, df = 4, p-value = 0.8646

Non-rejection of 
the homogeneity 

hypothesis


Non-rejection of 
the normality 

hypothesis




The smallest of the 5 p-values obtained is 0.1426
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Tests of goodness-of-fit to a given distribution

• Good fit of the distribution of observations to a known distribution law

(Kolmogorov-Smirnov)

• Normality of a distribution (Kolmogorov-Smirnov, Shapiro-Wilk)

Test for homogeneity

• Comparison of the distribution of levels of a categorical variable between 

several samples (Chi-squared or Fisher’s exact test)

Test of independence

• Study of the joint distribution of 2 categorical variables (Chi-squared or 

Fisher’s exact test)

2/ Tests for goodness-of-fit and independence
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χ² test of homogeneity
2 categorical variables: The notion of mean and variance no 

longer exists. We then try to compare 2 or more distributions 

observed on the samples to determine “if they come from 

the same population”.

Example: Distributions de 4 categories (l = 4) compared on 3 
groups of individuals (m = 3). Under H0, “the distributions are 
all the same and identical to the distribution observed on the 
whole samples”.

Under H0, χ² 
approximately 

follows a 
χ²((l−1)*(m−1)) 

distribution when n 
≥ 30 and all the 

counts ≥ 5.

Fig. Rejection region of 
the example with α = 5% 

and 6 df (black curve)
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Example: χ² test of independence

Cooper study* of the efficacy of Zidovudine (AZT) in a cohort of 936 asymptomatic 

HIV-positive subjects with CD4+ T-cell counts >400 mm3. Disease progression over 3 

years was defined as the onset of AIDS symptoms or a significant decrease in CD4+ 

cells.

TREATMENT PROGRESSION
NO 

PROGRESSION
TOTAL

AZT 76 399 475

Placebo 129 332 461

Total 205 731 936

2 categorical variables with 2 levels:

❑ TREATMENT (AZT or Placebo)
❑ DISEASE PROGRESSION (YES or NO)

H0: The variables TREATMENT and 
PROGRESSION are independent

 chisq.test(Cooper)

Pearson's Chi-squared test with Yates' continuity correction
data: Cooper
X-squared = 18.944, df = 1, p-value = 1.346e-05

Conclusion: 
Rejection of the null 
hypothesis of 
independence 
indicating a probable 
treatment effect

Cooper et al. (N Engl J Med. 1993)
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Application in genomics: Enrichment testing (1/2)
Problem: In a given set of genes, we want to know if a biological function “f” is more 

represented than in any other set of genes of the same size obtained “at random” 

from a random draw in the whole genome.

Examples of biological function: Gene Ontology (GO) term, metabolic pathway 

(KEGG or Reactome), or any other list of genes associated with a biological function 

of interest...

Under H0: There is no relationship between “f” and the gene set selected by the 

experiment, i.e. “No evidence that the biological function particularly characterizes 

the gene list”.

The functional enrichment test is based on a Fisher’s exact test using the 

hypergeometric (discrete) distribution described by the following 3 parameters:

• Size N of the population (reference or “background” genome)

• Size n of the studied gene set

• Probability p of a favorable event in the population (i.e., of randomly drawing a 

gene associated with “f”)
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Application in genomics: Enrichment testing (2/2)
Let N be the (known) size of the genome, E the number of genes (known) in the

genome belonging to “f” such that p = E/N, and n the size of the studied sample, the 

enrichment test gives a posteriori the probability under H0 of having obtained in the 

sample a number equal to or greater than the actually observed number e of genes 

associated with “f”:

If P(X ≥ e) < 5% : “f” is over-represented in the sample, and the sample studied is said 

to be “enriched” for the function “f”.

If the enrichment test is performed for several functions represented in the sample, 

this represents several hypotheses being tested and the p-values must be corrected to 

control the false positive rate (Bonferroni or Benjamini-Hochberg).

e = 5; n = 150; E = 28; N = 2700

phyper(e-1, E, N-E, n, lower.tail= FALSE)

fisher.test(matrix(c(e, E-e, n-e, N-E-n+e), 2, 2), 

alternative='greater')$p.value
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3/ Normality tests

Normality assumptions are often required in statistical analyses:

• Confidence intervals

• Student’s t-test, ANOVA

• Linear regression (normality of residuals)

• Etc.

It is then necessary to check these hypotheses either by a graphical approach:

• Superposition of the Gaussian density on the histogram of 
observations

• Quantile-Quantile plot (Henry’s line)

or by using a goodness-of-fit test to the normal distribution:

• Shapiro-Wilk test (n < 50)

• Kolmogorov-Smirnov test (n > 50)
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Example: Normality tests
Ages and cognitive scores (MMSE) of 77 subjects in a clinical study (simulated data):

ks.test(age, 

"pnorm", 

mean(age), 

sd(age))

One-sample Kolmogorov-Smirnov test
data: age

D = 0.060703, p-value = 0.9226
alternative hypothesis: two-sided

Non rejection of the null 
hypothesis of normality

ks.test(mmse, 

"pnorm", 

mean(mmse), 

sd(mmse))

One-sample Kolmogorov-Smirnov test
data: mmse

D = 0.19552, p-value = 0.005551
alternative hypothesis: two-sided

Rejection of the null 
hypothesis of normality
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4/ Non-parametric tests
A nonparametric test (NP) is a test that does not require any assumptions about 

the distribution of the data (distribution-free test). It is generally based on the 

study of the ranks of the observations, without depending on the means and 

variances estimated in the original data.

Pros:
• Applicable when certain conditions required for a parametric test are not met 

(e.g. normality, equality of variances...)

• Tests suitable for small samples (n < 30)

• Tests suitable for ordinal variables (e.g. degree of satisfaction)

Cons:
• When the distribution conditions are well satisfied: NP tests are less powerful 

than parametric tests

• Difficult to interpret because we no longer compare parameters such as means, 

proportions or variances...

Most parametric tests have equivalent non-parametric tests.
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In the case of small samples and non-Gaussian distributions (see goodness-

of-fit tests), one test strategy is to replace the values of the observations 

by their ranks:

Comparison of 2 independent samples:

• Wilcoxon-Mann-Whitney test
(also called Mann-Whitney U test or Wilcoxon sum-rank test)

Comparison of 2 paired samples:

• Wilcoxon signed-rank test

Comparison of more than 2 samples:

• Kruskal-Wallis test (+ Dunn’s post hoc test)

Nonparametric rank tests

Taken from
https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-l-inf-tests.pdf
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Example: Wilcoxon-Mann-Whitney test
Goal: We want to compare 2 groups A and B of patients whose cytorachy 

(presence of cells in cerebrospinal fluid measured in number of cells per μL) was 

assessed.

groupe B B B A B A B B B B B B A B B A B B A

cytorachy 5 6 7 8 8 9 10 10 11 14 16 17 18 19 20 21 22 23 26

rank 1 2 3 4.5 4.5 6 7.5 7.5 9 10 11 12 13 14 15 16 17 18 19

group B A B B A A A A A B B A A A B A A A A

cytorachy 27 34 35 40 41 45 49 84 85 92 100 154 160 173 200 348 480 560 612

rank 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Principle of the test: Under H0 the values of A (red) and B (blue) ordered on the 
rows are homogeneously mixed (groups A and B are equivalent).

Example from T. Ancelle, Statistique épidémiologie 3ème édition, Maloine, 2012

wilcox.test(valA,valB)

Wilcoxon rank sum test with continuity correction
data: valA and valB

W = 280.5, p-value = 0.003457
alternative hypothesis: true location shift is not equal to 0
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Nonparametric permutation tests

In the case of non-Gaussian distributions, permutation tests are robust 

approaches based on the resampling of observations. Thus, the significance 

will no longer be based on the theoretical distribution of the statistic under 

H0, but on an empirical distribution to be calculated from a large number of 

permutations (100, 1000 or more).

Example: to compare the means of 2 groups by a two-sided permutation test, 

the hypothesis H0 of “equality of the 2 means” is equivalent to the 

assumption that “all observations are interchangeable between the 2 groups”.

The test procedure is then as follows:

1. Calculate the true (non-permuted) value T0 of the test statistic

2. Generate a large number of random permutations of individuals between the 2 groups

3. Calculate the value of the test statistic T for each permutation

4. Determine the distribution and quantiles 2.5% et 97.5% of the “permuted” Ts under H0

5. Compare T0 to empirical quantiles and conclude
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Comparison of groups

79

Student 
t-test

Homogeneity

Wilcoxon-Mann-
Whitney test

Kruskal-Wallis 
test

2 out of 3 assumptions:
1. Balanced groups
2. Equal variances
3. Similar

distributions

Quantitative variable

Two-sample Z-
test with Normal 

distribution

Bartlett’s test for 
homogeneity of variances

YES

NO

Welch’s 
t-test

YES

NO

Non-homogeneity

ANOVAor

2 groups > 2 groups

Post hoc:
Dunnett, 

Tukey HSD…
Post hoc Dunn’s test

Categorical variable

χ² test or Fisher’s exact test
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Part 3: Data modeling
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In this section on regression models, we are particularly interested in 
the problem of a “dependent” variable Y (“to be explained”), which is 
observed alongside one or more “independent” variables X 
(“explanatory variables” or “regressors”) within the same individuals.

The modeling problem can then be defined as the search for a 
simplified representation of Y using the variables X in order to 
describe it, explain it or predict its values.

From a mathematical point of view, the aim is to determine a function 
f according to a predefined criterion of fit, capable of approximating 
the values of Y from the observed values of X:

where ε represents the noise or the (random) error term.

Regression and modeling
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Simple linear regression

ID CAG length Age at onset

1 46 39

2 50 31

3 54 20

4 62 14

5 57 25

6 45 40

7 44 43

8 40 45

9 42 46

10 41 48

11 44 50

Simple regression example: we aim to explain the age of onset of the first 

symptoms of 11 patients with spinocerebellar ataxia SCA1 from the 

polyglutamine length (CAG repeats).

Variable to be explainedExplanatory variable

Simple regression model:

Source: BIOSCA project
Problem: How to estimate a, b and σε?
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Ordinary least squares (OLS) estimators

The OLS criterion consists in 
finding the values of a and b 
that minimize the sum of the 
squared errors:

OLS estimates: 

Predicted values of yi: Residuals: 
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Analysis of variance and coefficient of determination

As the OLS criterion , we need a more meaningful criterion to 

check the quality of the regression (“goodness of fit”).

For this, we use the variance decomposition formula:

and the multiple linear correlation coefficient:

We then define the coefficient R² of determination:

R² close to 1, the model is excellent

R² close to 0, the model is useless!

In case of a simple model with 1 regressor, we have:

SST: Sum of Squares Total

SSE: Sum of Squares Error

SSM: Sum of Squares Model
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In order to validate the regression model, it remains to check the hypotheses on the 

residuals (i.i.d. and Gaussian terms). This verification is usually done by visual examination 

of graphs 

▪ Plot of residuals versus predicted values: the scatterplot should not show any particular 
structure (independence, homoscedasticity/constant variance, normality);

▪ Normality: Histogram and QQ-plot (points aligned on a straight line);

▪ Independence: autocorrelation of residuals (acf), Durbin Watson test…

Validation of the model

Figures. Plots of residuals (y axis) vs 
predicted values (x axis).
Case (a) validates the linear 
regression. Cases (b-f) indicate either a 
heteroskedasticity issue (d-e-f) or a 
dependency structure that is not taken 
into account by the model (b-c-e-f).

Solutions: use of “robust” OLS 
estimators, data transformation, data 
fitting by other types of non-linear 
models.

 





J. Faraway, Linear Models with R, Chapman & Hall 2004
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Interaction effect: beware of appearances...
Not taking into account the different genetic forms of SCA would lead to the 
(somewhat hasty) conclusion that the length of polyglutamine does not 
influence the age of onset of the disease!

Estimate Std. Error t value Pr(>|t|)

Model 1: All SCAs -0.075 0.112 -0.67 0.50597 (ns)

Model 2: SCA_1 -1.626 0.168 -9.679 0.000005 (***)

Model 3: SCA_2 -2.653 0.826 -3.213 0.008267 (**)

Model 4: SCA_3 -1.426 0.331 -4.315 0.000613 (***)

Model 5: SCA_7 -1.722 0.257 -6.703 0.000152 (***)

Table: Estimation 
and significance of 
regression slopes

Source: BIOSCA project
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For a single quantitative dependent variable linked with one or more 

quantitative and/or categorical explanatory variables, it is worth noting that 

linear regression and ANOVA are special cases of the same statistical model 

called linear model:

a) 1 quantitative explanatory variable: simple linear regression

b) ≥ 2 quantitative explanatory variables: multiple linear regression

c) 1 categorical variable: t-test (2 levels) or one-way ANOVA

d) ≥ 2 categorical variables: multi-way ANOVA

e) Combination of quantitative and categorical variables: ANCOVA

In general, the use of the linear model also allows us to assess the Y-X 

relationship in the presence of covariates (quantitative) or cofactors (qualitative). 

An “adjusted” model facilitates the disentanglement of the effects of covariates 

or cofactors from the variable of interest, determined with an adjusted p-value.

Linear model
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Simple cases of non-linear regressions

Models based on the “exponential” and “power” functions are 2 simple cases 

of non-linear relationships, as they can be linearized using the logarithm 

function:
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Generalized linear model

How to predict a variable Y with discrete or categorical values from an 

explanatory variable X that can be either discrete or continuous?

The generalized linear model (GLM) includes the linear regression model, as 

well as other interesting models allowing, for example, to predict a 

dependent variable Y with discrete values from 1 or more continuous or 

discrete explanatory variables.

Example 1 – Y binary variable 0/1: we wish to explain the absence (Y = 0) or 
presence (Y = 1) of coronary heart disease as a function of age in 100 
subjects.

Example 2 – Y counting variable: we wish to quantify the evolution of a 
number of bacteria as a function of time.

Example 3 – Y variable of life span: we wish to study the life span in weeks 
from diagnosis to death as a function of the white blood cell count (log10 
scale) at baseline for 33 patients with leukemia.
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Formulation of GLM
Generalized linear models are composed of 3 components:

• Random component: Dependent variable Y associated with a probability 

distribution

• Deterministic component: Linear predictor or linear combination of 

explanatory variables X1, …, Xk:

• Link function: Function g describing the functional relationship between the 

linear predictor and the mathematical expectation of the dependent variable Y

GLM:

Distribution Type of data Type of GLM Link function (g)

Normal Var. ~ Normal Linear model Identity: g(y) = y

Poisson Count Log-linear model Log: g(y) = log(y)

Binomial Percentage Logistic regression Logit: g(y) = log(y/(1-y))

Gamma Duration Gamma model with 
inverse link function

Inverse: g(y) = 1/y
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Unlike the case of linear regression where the estimation of the coefficients is 

based on the ordinary least squares method (i.e. minimizing the squared 

differences between the observed response and the predicted response), the 

parameters of the GLM are determined by another estimation method called 

the maximum likelihood method.

Principle of the maximum likelihood method:

Find the parameter values that maximize the “probability that the observed 

values of Y are realized conditionally on the assumed known parameters”:

The software calculates the estimates using an iterative algorithm (Fisher 

scoring or Newton-Raphson) where starting from an initial (fixed) value of the 

parameters, the value is updated at each iteration until convergence of the 

algorithm.

Estimation of parameters
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Case of binary logistic regression
The interpretation of the logistic model is relatively simple because its 
expression involves an “Odds” value corresponding to the ratio of the chances 
between events Y = 1 and Y = 0 knowing the value of X:

3 tests are available to evaluate the contribution of the variable X to the model:

• Wald test

• Likelihood ratio test (LRT)

• Score test

The coefficient eβ1 can then be interpreted in terms of the Odds-Ratio (OR) 
reflecting the change in the ratio of the chances of the event Y = 1 versus Y = 0 
occurring when X goes from x to x + 1:
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Example 1: Binary logistic regression

Example from Hosmer and Lemeshow, Applied Logistic Regression, Wiley, 2nd edition (2000)

Goal: to study the relationship between age and the presence (1) or absence 
(0) of coronary heart disease (CHD) in a population of 100 individuals.

 

Left figure: no linear fit is possible between 
age and the binary CHD variable.

Right figure: the sigmoidal shape (S-curve) of the 
relationship between age and CHD conditional 
expectation is well fitted by the logit function.

summary(glm(dat$CHD ~ dat$AGE, 

family = binomial(link = logit))) Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -5.30945 1.13365  -4.683 2.82e-06 ***
dat$AGE      0.11092 0.02406   4.610 4.02e-06 ***

Wald test
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Example 2: Poisson regression

Goal: to study the number of students diagnosed with an infectious disease 
since the first day of the epidemic.

 

summary(glm(formula = Students ~ Days, family = poisson, data = cases))

Coefficients:
Estimate   Std. Error   z value    Pr(>|z|)    

(Intercept)  1.990235 0.083935     23.71    <2e-16 ***
Days           -0.017463 0.001727    -10.11    <2e-16 ***

The average count of new cases as a function 
of time is described by the model:
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Example 3: Gamma regression

Goal: to study the blood clotting time (sec) when thromboplastin (2 batches 
tested) is added to plasma at 9 different concentrations (%).

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall
Data from Hurn et al (1945), J Lab & Clin Med.

  

Figures. Steps of modeling by a Gamma model using the inverse link function.

summary(glm(lot1 ~ log10(u), data = clotting, family = Gamma(link = inverse))

Lot 1 - Coefficients:
Estimate  Std. Error    t value   Pr(>|t|)    

(Intercept) -0.0165544 0.0009275  -17.85 4.28e-07 ***
log10(u)     0.0353288 0.0009555   36.98 2.75e-09 ***

Lot 2 - Coefficients:
Estimate  Std. Error   t value   Pr(>|t|)    

(Intercept) -0.023908 0.001326  -18.02 4.00e-07 ***
log10(u)     0.054339 0.001328   40.91 1.36e-09 ***

Lot 1: 1/E(clotting|x) = -0.017+0.035 x Lot 2: 1/E(clotting|x) = -0.024 + 0.054 x     x = log10(plasma)
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Concept of repeated measures

➢ Repetition of measurements of a variable on the same individuals in a sample. 

It may involve successive data collected over time (longitudinal studies).

The difficulty with repeated measures is that they introduce a correlation 

between the measures coming from the same individual (source of intra-subject 

variability). In a data modeling problem, the autocorrelation between the 

residuals resulting from these repeated measurements goes against the 

fundamental assumption of independence of errors on which the linear model is 

based.

Pros of repeated measurements:

• useful to study the dynamics of a phenomenon

• more observations available for the same number of individuals

Cons (loss of independence of observations):

• 2 observations from different individuals are independent, but 2 
observations from the same individual are not independent!
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Mixed effects models

In addition to the case of repeated measurements, one can be faced with 

situations where several observations are “naturally grouped” in a study.

Example. Family studies involving several members of the same family, 

studies conducted on twins, multi-center clinical studies where data are 

collected on patients from different hospitals, same lines of animals, etc.

Compared to the classical (generalized) linear model, the use of more 

complicated models, called mixed-effects models, allows the combination of 

“fixed” effects with “random” effects to take into account the correlation of 

individuals “grouped” together (e.g., patients from the same center), the 

intra-individual correlation of longitudinal data, or a mixture of the two 

(measurements over time for the same subjects from different groups of 

subjects).
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Fixed and random effects
It is difficult to find consensual definitions for the fixed and random effects of a 

modeling problem, so a simplified presentation is given here to help in 

applications.

Fixed effect: the data come from all possible levels of a qualitative variable whose 

specific impact on the response variable is to be studied.

Example: in a study comparing performance on a cognitive test (response variable) 

between a group of patients and a group of healthy subjects, the group factor is a fixed 

effect whose impact on the response variable we wish to study.

Random effect: the data come only from a random sample of all possible levels of 

a qualitative variable (typically a grouping factor) whose specific impact on the 

response variable is not of interest, but whose effect must be controlled for in the 

model.

Previous example: if the data come from 5 hospitals, the center may constitute a 

random effect, ① because the study does not involve all hospitals in France, and ②

because some experimental conditions could vary from one center to another.
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From modeling to prediction...

To proceed from modeling to prediction, we must first study the 

generalization property of the model; that is, the ability of the model to make 

robust predictions on new data.

To evaluate this capacity, we need 2 independent data sets:

• 1 training set: dataset used to “train the model”

• 1 test set: independent prediction dataset to evaluate the prediction error 
of the model (according to a predefined criteria)

The learning step must be done in such a way as to avoid as much as possible 

the two phenomena of overfitting and underfitting.

Overfitting reflects a situation where the model fits the training data too well, 

making it less flexible to apply to new data. Conversely, underfitting occurs 

when the model is not complex enough to correctly describe the relationship 

between the variables based on the training data.
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TO BE CONTINUED…

With the biostatistics team of the Brain Institute:

Sana Rebbah

Baptiste Crinière-Boizet

Gaspard Martet
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